3.3.35 \(\int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [A] (verified)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [A] (warning: unable to verify)
3.3.35.5 Fricas [C] (verification not implemented)
3.3.35.6 Sympy [F]
3.3.35.7 Maxima [F]
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 25, antiderivative size = 270 \[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {c \sec (a+b x)}}{\sqrt {2} b \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {c \sec (a+b x)}}{\sqrt {2} b \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {c \sec (a+b x)}}{2 \sqrt {2} b \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {c \sec (a+b x)}}{2 \sqrt {2} b \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}} \]

output
1/2*arctan(-1+2^(1/2)*tan(b*x+a)^(1/2))*(c*sec(b*x+a))^(1/2)/b*2^(1/2)/(d* 
csc(b*x+a))^(1/2)/tan(b*x+a)^(1/2)+1/2*arctan(1+2^(1/2)*tan(b*x+a)^(1/2))* 
(c*sec(b*x+a))^(1/2)/b*2^(1/2)/(d*csc(b*x+a))^(1/2)/tan(b*x+a)^(1/2)+1/4*l 
n(1-2^(1/2)*tan(b*x+a)^(1/2)+tan(b*x+a))*(c*sec(b*x+a))^(1/2)/b*2^(1/2)/(d 
*csc(b*x+a))^(1/2)/tan(b*x+a)^(1/2)-1/4*ln(1+2^(1/2)*tan(b*x+a)^(1/2)+tan( 
b*x+a))*(c*sec(b*x+a))^(1/2)/b*2^(1/2)/(d*csc(b*x+a))^(1/2)/tan(b*x+a)^(1/ 
2)
 
3.3.35.2 Mathematica [A] (verified)

Time = 2.06 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.45 \[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=-\frac {\left (\arctan \left (\frac {-1+\sqrt {\cot ^2(a+b x)}}{\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}\right )+\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}{1+\sqrt {\cot ^2(a+b x)}}\right )\right ) \cot (a+b x) \sqrt {c \sec (a+b x)}}{\sqrt {2} b \sqrt [4]{\cot ^2(a+b x)} \sqrt {d \csc (a+b x)}} \]

input
Integrate[Sqrt[c*Sec[a + b*x]]/Sqrt[d*Csc[a + b*x]],x]
 
output
-(((ArcTan[(-1 + Sqrt[Cot[a + b*x]^2])/(Sqrt[2]*(Cot[a + b*x]^2)^(1/4))] + 
 ArcTanh[(Sqrt[2]*(Cot[a + b*x]^2)^(1/4))/(1 + Sqrt[Cot[a + b*x]^2])])*Cot 
[a + b*x]*Sqrt[c*Sec[a + b*x]])/(Sqrt[2]*b*(Cot[a + b*x]^2)^(1/4)*Sqrt[d*C 
sc[a + b*x]]))
 
3.3.35.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.63, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 3109, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}}dx\)

\(\Big \downarrow \) 3109

\(\displaystyle \frac {\sqrt {c \sec (a+b x)} \int \sqrt {\tan (a+b x)}dx}{\sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {c \sec (a+b x)} \int \sqrt {\tan (a+b x)}dx}{\sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\sqrt {c \sec (a+b x)} \int \frac {\sqrt {\tan (a+b x)}}{\tan ^2(a+b x)+1}d\tan (a+b x)}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \int \frac {\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \int \frac {\tan (a+b x)+1}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \int \frac {1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (a+b x)}+1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}\right )\right )}{b \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

input
Int[Sqrt[c*Sec[a + b*x]]/Sqrt[d*Csc[a + b*x]],x]
 
output
(2*((-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2 
]*Sqrt[Tan[a + b*x]]]/Sqrt[2])/2 + (Log[1 - Sqrt[2]*Sqrt[Tan[a + b*x]] + T 
an[a + b*x]]/(2*Sqrt[2]) - Log[1 + Sqrt[2]*Sqrt[Tan[a + b*x]] + Tan[a + b* 
x]]/(2*Sqrt[2]))/2)*Sqrt[c*Sec[a + b*x]])/(b*Sqrt[d*Csc[a + b*x]]*Sqrt[Tan 
[a + b*x]])
 

3.3.35.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3109
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*((b*Sec[e + f*x])^n/Tan[e + f*x]^n 
)   Int[Tan[e + f*x]^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !Integer 
Q[n] && EqQ[m + n, 0]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.35.4 Maple [A] (warning: unable to verify)

Time = 36.15 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.34

method result size
default \(-\frac {\sqrt {2}\, \sqrt {c \sec \left (b x +a \right )}\, \left (\ln \left (2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \cot \left (b x +a \right )+2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \csc \left (b x +a \right )-2 \cot \left (b x +a \right )+2\right )+2 \arctan \left (\frac {-\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{\cos \left (b x +a \right )-1}\right )-\ln \left (-2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \cot \left (b x +a \right )-2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \csc \left (b x +a \right )-2 \cot \left (b x +a \right )+2\right )-2 \arctan \left (\frac {\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{\cos \left (b x +a \right )-1}\right )\right ) \cos \left (b x +a \right )}{4 b \left (\cos \left (b x +a \right )+1\right ) \sqrt {d \csc \left (b x +a \right )}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}}\) \(361\)

input
int((c*sec(b*x+a))^(1/2)/(d*csc(b*x+a))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4/b*2^(1/2)*(c*sec(b*x+a))^(1/2)*(ln(2*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/ 
(cos(b*x+a)+1)^2)^(1/2)*cot(b*x+a)+2*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos( 
b*x+a)+1)^2)^(1/2)*csc(b*x+a)-2*cot(b*x+a)+2)+2*arctan((-sin(b*x+a)*2^(1/2 
)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(cos(b*x+a 
)-1))-ln(-2*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*cot(b* 
x+a)-2*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*csc(b*x+a)- 
2*cot(b*x+a)+2)-2*arctan((sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos( 
b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(cos(b*x+a)-1)))*cos(b*x+a)/(cos(b*x+a)+1 
)/(d*csc(b*x+a))^(1/2)/(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)
 
3.3.35.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.51 (sec) , antiderivative size = 1135, normalized size of antiderivative = 4.20 \[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=\text {Too large to display} \]

input
integrate((c*sec(b*x+a))^(1/2)/(d*csc(b*x+a))^(1/2),x, algorithm="fricas")
 
output
-1/8*I*(-c^2/(b^4*d^2))^(1/4)*log(2*b^2*c*d*sqrt(-c^2/(b^4*d^2))*cos(b*x + 
 a)*sin(b*x + a) - 2*c^2*cos(b*x + a)^2 + c^2 - 2*(I*b*c*(-c^2/(b^4*d^2))^ 
(1/4)*cos(b*x + a)^2*sin(b*x + a) + (I*b^3*d*cos(b*x + a)^3 - I*b^3*d*cos( 
b*x + a))*(-c^2/(b^4*d^2))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a) 
)) + 1/8*I*(-c^2/(b^4*d^2))^(1/4)*log(2*b^2*c*d*sqrt(-c^2/(b^4*d^2))*cos(b 
*x + a)*sin(b*x + a) - 2*c^2*cos(b*x + a)^2 + c^2 - 2*(-I*b*c*(-c^2/(b^4*d 
^2))^(1/4)*cos(b*x + a)^2*sin(b*x + a) + (-I*b^3*d*cos(b*x + a)^3 + I*b^3* 
d*cos(b*x + a))*(-c^2/(b^4*d^2))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b* 
x + a))) + 1/8*(-c^2/(b^4*d^2))^(1/4)*log(-2*b^2*c*d*sqrt(-c^2/(b^4*d^2))* 
cos(b*x + a)*sin(b*x + a) - 2*c^2*cos(b*x + a)^2 + c^2 + 2*(b*c*(-c^2/(b^4 
*d^2))^(1/4)*cos(b*x + a)^2*sin(b*x + a) - (b^3*d*cos(b*x + a)^3 - b^3*d*c 
os(b*x + a))*(-c^2/(b^4*d^2))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + 
 a))) - 1/8*(-c^2/(b^4*d^2))^(1/4)*log(-2*b^2*c*d*sqrt(-c^2/(b^4*d^2))*cos 
(b*x + a)*sin(b*x + a) - 2*c^2*cos(b*x + a)^2 + c^2 - 2*(b*c*(-c^2/(b^4*d^ 
2))^(1/4)*cos(b*x + a)^2*sin(b*x + a) - (b^3*d*cos(b*x + a)^3 - b^3*d*cos( 
b*x + a))*(-c^2/(b^4*d^2))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a) 
)) + 1/8*(-c^2/(b^4*d^2))^(1/4)*log(-c^2 + 2*(b*c*(-c^2/(b^4*d^2))^(1/4)*c 
os(b*x + a)^2*sin(b*x + a) + (b^3*d*cos(b*x + a)^3 - b^3*d*cos(b*x + a))*( 
-c^2/(b^4*d^2))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a))) - 1/8*(- 
c^2/(b^4*d^2))^(1/4)*log(-c^2 - 2*(b*c*(-c^2/(b^4*d^2))^(1/4)*cos(b*x +...
 
3.3.35.6 Sympy [F]

\[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=\int \frac {\sqrt {c \sec {\left (a + b x \right )}}}{\sqrt {d \csc {\left (a + b x \right )}}}\, dx \]

input
integrate((c*sec(b*x+a))**(1/2)/(d*csc(b*x+a))**(1/2),x)
 
output
Integral(sqrt(c*sec(a + b*x))/sqrt(d*csc(a + b*x)), x)
 
3.3.35.7 Maxima [F]

\[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=\int { \frac {\sqrt {c \sec \left (b x + a\right )}}{\sqrt {d \csc \left (b x + a\right )}} \,d x } \]

input
integrate((c*sec(b*x+a))^(1/2)/(d*csc(b*x+a))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(c*sec(b*x + a))/sqrt(d*csc(b*x + a)), x)
 
3.3.35.8 Giac [F]

\[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=\int { \frac {\sqrt {c \sec \left (b x + a\right )}}{\sqrt {d \csc \left (b x + a\right )}} \,d x } \]

input
integrate((c*sec(b*x+a))^(1/2)/(d*csc(b*x+a))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(c*sec(b*x + a))/sqrt(d*csc(b*x + a)), x)
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}} \, dx=\int \frac {\sqrt {\frac {c}{\cos \left (a+b\,x\right )}}}{\sqrt {\frac {d}{\sin \left (a+b\,x\right )}}} \,d x \]

input
int((c/cos(a + b*x))^(1/2)/(d/sin(a + b*x))^(1/2),x)
 
output
int((c/cos(a + b*x))^(1/2)/(d/sin(a + b*x))^(1/2), x)